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Introduction



Introduction

• Cancer ranks as one of the top causes of death globally.

• Thyroid cancer is among the most prevalent endocrine malignancies

worldwide, with differentiated thyroid cancer (DTC) representing the

majority of cases.

• Traditional approaches often lack the precision for personalized

treatment planning, so there has been growing interest in leveraging

machine learning instead (Xi et al, 2022; Bhattacharya et al, 2023; Borzooei

et al, 2024).
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Machine Learning Algorithms Analyzed

We aim to compare the performance of six machine learning

models for predicting DTC recurrence.

Algorithm A Key Advantage

Support Vector Machines (SVM) Effective for high-dimensional data

Random Forests (RF) Ensemble method via bagging

Extreme Gradient Boosting (XGBoost) Ensemble method via boosting

Artificial Neural Networks (ANN) Models complex non-linear relationships

K-Nearest Neighbors (KNN) Efficient, based on space proximity

Logistic Regression (LR) High interpretability, outputs probabilities

Details: https://marlycormar.github.io/primes-research-project-2024/
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Reproducibility

• R programming language

• tidymodels ecosystem and workflows package

• Quarto manuscript structure and renv environment
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Overview of Dataset

• Differentiated Thyroid Cancer Recurrence dataset (383 patients)

from the UCI Machine Learning Repository.

• 16 predictors

• One numerical predictor: Age
• 15 categorical predictors:

• Gender, Smoking, History of smoking, History of radiotherapy

• Thyroid function, Physical examination, Adenopathy, Pathology,

Focality

• Risk assessment, Cancer stage, T, N, M, Initial treatment response

• One outcome variable: whether DTC recurred.
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Understanding Data



Exploratory Data Analysis

• After removing duplicates, the dataset has 364 observations.

• Figure 1: 80.5% of the patients are female, while 19.5% are male.

Males are more likely to have DTC recurrence.

• Figure 2: In general, older patients are more likely to have DTC

recurrence.
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Exploratory Data Analysis

• Besides age, the rest of the features are categorical.

• Adenopathy: the presence of swollen lymph nodes during physical

examination.
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Model Training & Testing

What is the process of creating and testing a machine learning model?

• Training Set: Portion of the dataset used for fitting the model. We

use the training set (the predictors and response variable) to

determine a model by minimizing some error function.

• Test Set: Portion of the dataset used for computing the model’s

performance.

The goal is to train a model that is not too specific to the training set

while maintaining high accuracy.

• We also use k-fold cross-validation in which we split the training

data into k parts and sequentially fit the model on k − 1 parts,

leaving the last part as a testing set.
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Metrics for Model Performance

Truth: Positive Truth: Negative

Prediction: Positive TP FP

Prediction: Negative FN TN

• Accuracy: proportion of correct predictions, or TN+TP
TN+TP+FN+FP .

• Precision: proportion of positive classified observations that are

actually positive, or TP
TP+FP .

• Recall: proportion of actual positive observations correctly classified

as positive, or TP
TP+FN .

• Specificity: proportion of actual negative observations correctly

classified as negative, or TN
TN+FP .
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Random Forest (RF)

Random Forest is an ensemble learning method that

• constructs multiple decision trees

• outputs the mode of the classifications given by the individual trees

Each decision tree

• uses recursive binary splits

• minimizes an error criterion, e.g. Gini index
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Random Forest (RF): Reduce Variance

Intuition: Given n independent observations, each with variance σ2, the

variance of their average is σ2/n.

Bagging

• Train multiple trees on different samples of the data.

• The final prediction is the mode of the predictions of all trees.
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Random Forest (RF): Reduce Variance

Intuition: Given n independent observations, each with variance σ2, the

variance of their average is σ2/n.

Random selection of features for each split

• Approximately
√
p features are used, where p is the total number of

features.

• Reduces the correlation between the predictions of different trees.
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Artificial Neural Network (ANN)

• ANNs are computational models inspired by the brain, composed of

interconnected nodes (neurons) in layers.

• An ANN is composed of multiple layers, including an input layer,

one or more hidden layers, and an output layer.

Source: Gareth James et al., 2021
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Artificial Neural Network (ANN)

• The input layer receives the raw data, the hidden layers process the

data, and the output layer produces the final prediction.

• Each connection between neurons has an associated weight, and

each neuron has a bias term. These parameters are optimized during

training.

Source: Gareth James et al., 2021
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Logistic Regression (LR)

• Supervised learning algorithm widely used for classification problems.

• For binary classification, the algorithm estimates the log odds of

each observation via a linear function.

Odds and Log Odds

The odds of an event X denote the probability of “success” to that of

“failure” – that is, the quantity p(X )
1−p(X ) .

The log odds is the quantity log p(X )
1−p(X ) .

LR Model

For each point X with predictors X1, . . . ,Xp, the algorithm fits the

equation

log oddsX = β0 + β1X1 + · · ·+ βpXp,

where the β0, β1, . . . , βp are parameters to be estimated.
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Logistic Regression (LR)

The model is fitted by maximizing the probability of the observed data.

LR Parameter Estimation

For a given training set of points x1, . . . , xn with response variables

y1, . . . , yn, we are maximizing the likelihood function

L(β) =
∏
yi=1

P(xi )
∏
yi=0

(1− P(xi )).

We can write this as a single product

L(β) =
n∏

i=1

P(x1)
yi · (1− P(xi ))

(1−yi ).

This is equivalent to maximizing the log-likelihood function

ℓ(β) =
n∑

i=1

[yi logP(xi ) + (1− yi ) log(1− P(xi ))].
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All Models’ Metrics

SVM RF XGBoost ANN KNN LR

Accuracy 78.0% 94.5% 91.2% 92.3% 90.1% 93.4%

Precision 23.1% 84.6% 73.1% 84.6% 76.9% 84.6%

Recall 100.0% 95.7% 95.0% 88.0% 87.0% 91.7%

Specificity 76.5% 94.1% 90.1% 93.9% 91.2% 94.0%
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Best Models

• RF is the most robust and balanced classifier for predicting DTC

recurrence.

• RF achieved the highest accuracy and specificity rates, both at

94%, demonstrating its reliability in correctly identifying both

positive and negative cases.

• ANN, LR, and RF all achieve 85% precision, so they are equally

competent at correctly predicting positive cases.
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Correlation Matrix of Model Predictions

Here is a correlation heatmap pairwise comparing the predictions.
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Correlation Matrix of Model Predictions

• The pairwise correlations between the non-SVM models are all at

least 0.85, while those between SVM and the other models are all

at most 0.5.

• In fact, SVM has a really high false positive rate.

• There is not a single test case in which SVM predicts negative, but

the other model predicts positive.

• For each model, there are between 14 and 20 test cases (among

the 91 total) for which SVM predicts positive but the other model

predicts negative.
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Bayesian Model Comparison

• Bayesian Model Comparison leverages the resampling results

obtained during model tuning to approximate model performance.

• While this is not the same as test performance, we expect it to be a

reasonable approximation.

Choose some base model and specify its metric β0. A standard ANOVA

model predicts how different each model is in that metric via the

equation

y = β0 + β1m1 + · · ·+ βkmk ,

where the y denotes the metric and the mj serve as indicator variables for

the rest of the models.

• In the Bayesian case, each of the parameters βi represent a

distribution, rather than a single value.
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Bayesian Model Comparison Results

Model Comparison: Specify a difference in metrics we consider

negligible – usually 0.02 – and look at the difference distributions of the

model metrics. If a large proportion of area lies within this region, then

the models’ performances in the metric are not practically different.

Results: RF had the best distributions in all the metrics tested, though

the metric distributions did lie in the practical equivalence region for LR

and ANN, with high probability.
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Improving Models via Feature

Selection



Why Feature Selection?

• Dimensionality reduction

• Identification of critical predictors of DTC recurrence
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Factor Analysis for Mixed Data (FAMD)

• Approach: Find a low-dimensional representation of the data that

captures most of the variance.

• Numerical predictors p1, . . . , pP

• Categorical predictors q1, . . . , qQ

• First principal component: linear combination Z1 of predictors

with maximal

P∑
i=1

r2(Z1, pi )︸ ︷︷ ︸
Correlation coef.

+
Q∑
i=1

η2(Z1, qi )︸ ︷︷ ︸
Correlation ratio

.

The vector of coefficients of predictors in Z1 is denoted by ϕ1.

• Second principal component: linear combination Z2 such that ϕ2

is orthogonal to ϕ1.
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Results from Factor Analysis for Mixed Data

Top three contributors to the first three principal components

PC1 PC2 PC3

Risk (12.7%) Risk (18.7%) T (33.8%)

T (11.1%) T (17.1%) Pathology (27.7%)

Response (10.8%) Stage (11.3%) Physical Examination (7.7%)
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Feature Selection via FIA

It is important to understand why the models produced the predictions

that it did. This can be done with a process called feature importance

analysis (FIA). FIA is also useful for

• Model Improvement: By identifying the most impactful features,

FIA helps one focus efforts on the data that truly matters.

• Overfitting Detection: Features with surprisingly high importance

might indicate overfitting. FIA helps you identify such features and

potentially adjust the model to reduce overfitting.

We can perform two types of FIA: Impurity Importance and

Permutation Importance.
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FIA: Impurity Importance

Method: Impurity importance measures the importance of a feature

based on the total reduction of the criterion (impurity) brought by that

feature. Features with higher impurity reduction are considered more

important.

Advantages: It is relatively fast compared to other feature importance

methods and provides a global view of feature importance across the

entire model.

Limitations: Impurity importance can be biased towards numerical

features or those with many categories, and is sensitive to overfitting.
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FIA: Permutation Importance

Method: Permutation importance measures the importance of a feature

by fixing a feature and shuffling the other features. The change in a

performance metric (accuracy here) gives information about the influence

of the given feature.

Advantages: It directly measures the impact on model accuracy.

Limitations: Permutation importance can overestimate the importance

of correlated features. Additionally, it can be computationally expensive,

especially for large datasets or complex models.
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Combined Results of FAMD and FIA

Important features: Risk, T, Response, Pathology, Thyroid Function,

Adenopathy, Age

Improved model performance: Most pronounced for KNN.

Metric Original Value New Value

Accuracy 90.1% 94.5%

Precision 76.9% 84.6%

Recall 87.0% 95.7%

Specificity 91.2% 94.1%
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Thank you!
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